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Abstract

We present an algorithm for solving convex programs with nonlinear con-
straints. The algorithm works in the primal space only and uses a predictor-
corrector strategy to follow a smooth path that leads to an optimal solution.
The algorithm simultaneously iterates towards feasibility and optimality. The
matrices occurring in the algorithm can be kept sparse if the nonlinear func-
tions are separable or depend on few variables only. Some promising numerical
examples obtained from a preliminary implementation are included.
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1. INTRODUCTION

Following Karmarkar's proof of polynomial-time complexity of an interior-point
method for solving linear programs [10], efficient numerical implementations for the
solution of linear programs by related interior-point methods have been presented;
e.g. [14, 15, 18] and many others. The applicability of such interior-point methods
to nonlinear convex programs-like problem (CP) below-was soon recognized by
Sonnevend in [28], and a detailed complexity analysis of these applications was pre-
sented in [5, 6, 16, 23, 24], showing that for certain classes of nonlinear constraints
essentially the same speed of convergence can be expected as for a linear program.

The conversion of these theoretical results into numerical algorithms has been
very slow so far. In this paper, we intend to provide some encouragement (supported
by numerical experiments) that interior-point methods are in practice--not just in
theory-an efficient tool for solving certain classes of convex (and possibly non-
convex) problems.

IThis work was supported by a research grant from the Deutsche Forschngsgeeinhs-aft., and

by the U.S. National Science Foundation Grant DDM-8715153 and the Office of Naval lescarch
Grant N00014-90-J-1242.

*On leave from Institut fur Angewandte Mathenatik, University of Wiirzhurg, 8700 Wtiirziirg,
(West) Germany.



1.1. The Problem

The problem under study is to find

min{fo(x) I x E P }, (CP)

and a corresponding optimal solution x*, where the feasible domain' P is given by

P:={xE R'Ifi(x)-<O, 1<i<m}, (1.1)

and the fi : S --* R (0 < i < m) are continuous convex functions, i.e. fi E C(S).
We assume that the functions fi are defined on a common closed set S D P and
that the fi are twice continuously differentiable in the interior S' of S. The first
and second derivatives are assumed to be known and are denoted by column vectors
and square matrices:

gi(x) = Vfi(x), Hi(x) = V 2f,(x).

The algorithm is designed to work properly even if P is empty or unbounded. The
only assumption is that we are given a starting point x0 in S' . The point x0 may
be infeasible for (CP).

2. A SIMPLE BARRIER METHOD

2.1. Barrier Methods in General

The principle of a barrier method for approximating the solution of problem (CP)
is based on the ideas in [1, 2] and can be outlined as follows.

For p = po, pi, p 2, ... (where 1 = po > 1Al > 2 ... and Pk --+ 0), find

x(p) := argmin fo(x) + p (x),

i.e. minimize the true objective function fo perturbed by yo, where O(x) is a smooth
convex "barrier function" for the set P (tending to infinity as x approaches the
boundary of P and finite in P').

We will choose the function O(x) = - E log(-fi(x)). For this definition of 0
it is straightforward to see that 40 is smooth and convex if the f1 are so.

It is well known (see e.g. [1]) that the minimizers x(p) are unique if, for example,
P is bounded, 40 is strictly convex and fo is convex. Further, for any p > 0 the barrier
term pq(x) ensures that x(p) is feasible for (CP). Fiacco and McCormick showed
under weak assumptions that the minimizers x(p) converge to an optimal solution of
problem (CP) as the perturbation po(x) of the objective function is "phased out",
i.e. as u - 0.

'Itere we assume a simple (but general) form of P. It is straightforward to include linear
constraints and upper and lower bounds on the variables in an efficient way.

2



2.2. What Makes Them Work

In what follows we try to motivate rather informally what makes a barrier method
work.

1. An immediate advantage of a barrier method is that a constrained optimization
problem is solved via smooth unconstrained problems. This idea was early
recognized in [1, 2].

2. A second important point is that under certain conditions [6, 23] all subprob-
lems are of the same "difficulty" or the same structure; that is, no matter how
small Ilk is, the domain of convergence of Newton's method for finding X(pk)
is always a "fixed percentage" of the previous level set {xj x E P, fo(x) <_
fo(x(pk- 1))}, and the "percentage" is independent of the data of the prob-
lem. This fact was discovered only recently, and it depends on the choice of
the barrier function and the constraint functions. For a detailed analysis we
refer to [7, 24].

Note that the minimizers x(p) converge to an optimal solution of (CP), which
usually lies at the boundary of P. Since the barrier function goes to infinity as
its argument approaches the boundary, one might expect that the subproblems
become increasingly harder to solve as p tends to zero. The above statement
is rather surprising in that it guarantees that-from the point of view of the
size of the domain of convergence of Newton's method-all subproblems are
equally hard to solve (at least in the absence of rounding errors).

3. A third nice property is that (under weak conditions) x(p) is a smooth curve
in p (see [13), and the tangent to x(p) at p = Yk (pointing to the "next point"
X(pk+1)) is easily computable (see Section 4.1).

4. Finally it is also important that under weak conditions, one can show that the
"distance" jfo(x(p)) - fo(x*)l is O(p), making the size of p a reliable stopping
criterion.

Below we state a conceptual interior-point algorithm. The algorithm is guaran-
teed to converge globally with a linear rate of convergence that is independent of the
problem data if the second derivatives of the constraint functions satisfy a relative
Lipschitz condition as defined in [6], or if the logarithmic barrier function satisfies a
so-called self-concordance relation defined in [24]. These conditions guarantee that
point 2 above holds true. The complexity analyses based on these Conditions (as
well as the conditions themselves) are quite involved. Here we only mention that
a fairly general class of convex constraints (in particular linear or convex quadratic
functions) satisfy these conditions. Our numerical experilents suggest that the al-

gorithin also works for larger classes of problems for which a theoretical proof of
convergence has not been shown yet. In this paper we (1o not assunie either of the
two conditions given in [71 or [241, and will not give any coniplexity results.
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2.3. Outline of a General Barrier Method

A general outline for a barrier method can be stated as follows.

Assume po = 1 and x(po) are given. Set k -- 0.
Do until convergence

" Compute the tangent x'(pk).

* Select pk+i < Ilk-

* Determine a prediction for the next iterate by

i(lik+) := x(k) + (k+1 - JPk)X'(jlk) •

* Find X(pk+1) by Newton's method starting from i(pk+1).

* Set k=k+l.

End

In this outline we suppressed a number of details that we mention briefly, post-
poning their detailed discussion to Section 3.

1. The points x(p) need not be computed exactly.

2. Newton's method and the extrapolation must be secured by a linesearch (since
the function 0 that defines x(p) is not defined outside P).

3. We must find an initial point x(po) minimizing fo(x) + poO(x).

2.4. Note on Primal-Dual Methods

The method outlined above works in the primal space only. We briefly mention the
relationship to primal-dual methods.

It is straightforward to convert the KKT-conditions of a convex optimization
problem into a nonlinear complementarity problem that involves primal and du;
variables. The functions defining the nonlinear complementarity problem are r .o-
tone (they are the gradients of convex functions) and interior-point algoriP nis for
solving nonlinear complementarity problems with monotone functions have been
proposed in [12, 13]. Implementations of such primal-dual methods proved to very
effective when applied to linear programs [14, 15], and it may be exp'ected that the
same also holds for nonlinear problems. However, the search dir-ctions generated
by primal and primal-dual methods coincide at points on the T,th of analytic cen-
ters, and the worst-case complexity for primal and primal-dual algorithms is the
same. Moreover, the strong theoretical results proved in 17, 24] about the conver-
gence of primal methods for solving convex programs have not been proved (yet)
for primal-dual methods.
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2.5. Important Details

Our method has much in common with the traditional barrier methods suggested
by [2, 1] and implemented in SUMT in 1964. It is natural to ask why these methods
did not retain their initial popularity. We try to give a partial answer by pointing
out some new developments.

e It is important which barrier function is chosen. For large classes of problems
the lo6arithmic barrier function allows rigorous proofs of convergence that
cannot be given for other barriers like 1/fi(x). An implementation that takes
advantage of the strong theoretical results-in particular those shown in [24,
7]-may yield a robust solver for some classes of (almost) convex problems.

* As pointed out in [20, 30], the Hessians of the barrier functions become increas-
ingly ill-conditioned2 as the iterates approach an optimal solution x" if there
are less than n linearly independent constraints active at x*. This difficulty
also occurs when solving degenerate linear programs by interior-point meth-
ods. The large number of numerical experiments carried out to date suggests,
however, that with a careful choice of algebra for solving the linear equations
this difficulty can be overcome. We may hope that this is also the case when
solving nonlinear problems. In addition, the fact that computers today use a
much higher arithmetic precision than 25 years ago makes current codes less
sensitive to ill-conditioning. Finally, as pointed out by [3], a concept used in
early barrier methods of enforcing equality constaints by a quadratic penalty
function (rather than linearizing them at each step and using projections)
introduced further numerical instability.

* Many implementations of interior-point methods for the conceptually simpler
problem of solving linear programs have been tested in the recent past. These
implementations documented the great importance of good sparse-matrix tech-
niques. Without the latter, interior-point methods for large linear programs
are completely unattractive, and the same may be true for nonlinear problems.
It may be anticipated, however, that interior-point methods applied to certain
classes of "inherently sparse" (e.g. separable) problems with cheap first anl
second derivatives will be able to exploit the additional structure anld Yield
fast speciai-purpose solvers.

3. A MODIFIED BARRIER METHOD FOR (CP)

3.1. Shifted Constraints fi(x,1 s)

A given initial point x0 E So might not be feasible for (CP). In order to (lefinte
a harrier function for x0 we "enlarge" the feasible set. P by suttractiiig certaii

2I'his can also be s(een from the inner and oiler (lipsoidal approximations of the' h'cl m. st

,llipsoids give I by the lessiai of the barrier fuinction and cent-red at the point., _rtj o If tllr, ;w

le.ss than n active constraints, the level sets become "flat" and tOe ellip.soids approxim;ting thcl
hencie ),colne singular in the limit; see [7].



nonnegative quantities O3i from fi such that f,(x ° ) - Oi < 0, i.e. such that xO is in
the "enlarged" feasible domain {x I fi(x) -)3i < 01.

More precisely, let t = maxi<,j{1,fi(x°)} and /i = max{fi(x ° ) + t,O} for
1 < i < m, and define 3

fi(x,p) = fi(x) - Pi. (3.1)

This implies that
fi(x 0,1) < -t, 1 < i< m.

The above computation of j3i is not invariant under multiplication of fi with a
positive constant 4 . Without loss of generality we therefore assume that all functions
f, satisfy

Ijg(x°)I2 + IHl X )IIF = 1, 0 < i < m, (3.2)

where the Frobenius norm IIAIIF of a matrix A is given by IIAIIF = Ab" 2 and
is easy to compute. (To arrange this we simply multiply fi(x) by a suitable scalar
before we start the algorithm.) Note that Vxfj(x,pu) = gi(x).

3.2. Shifted Sets PO

For it E [0, 11 we consider feasible domains P,, defined by

P, := {X1 fi(X,Y) _< 0, 1 < i < m}. (3.3)

Note that Po = P and that x° is in the interior of Pi (i.e. x° E Pf°). The following
lemma relates the feasible domains P. to P.

Lemma 1

1. P C P, C P,2 for 0 < p1 <p!2 < L.

2. P = l,>oP,.

3. If P is not empty, the interior P, is not empty for all p E (0, 1].

4. If P is empty, there is a 6 in [0,1) such that P is empty for all p E [0,6) and
the interior P.0 is not empty for all p E (6, 1].

Proof: See Appendix B. I
The algorithm below follows a path of points x(p) E P,, from p = I to p = 0+. In

contrast to the simple outline given earlier, the feasible sets P, for the subproblems

3 The approach presented here may need to be modified in the following case. A certain function

f, may be convex (or have a self-concordant barrier function) in the domain {zlf,(x) < 0) but not

in {rjf,(x) < 1 ,) if 0, > 0. For a more precise statement we refer to Appendix A.

'Nor is it affine invariant. However it guarantees that the initial point x° is at least t > 1 away

from each constraint f,(z)-/)3, < 0, which is sufficient for our purposes. (Finite-precision arithmetic

is not affine invariant either.) An affine invariant computation of / is given by the solution of the

following problem: min{11#112 I/3 > 0, f,(z ° ) -/1, < 0, Eg,( 0 )/(f,(z ° ) - /,) = 0).
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of finding x(p) do not remain constant in our method below. For the sets P, we
define a barrier function 4) of the free variables x and the parameter p by5

O(Xp)= - ylog(-fA(X,p)).
i=1

3.3. The Perturbed Center

Before stating the subproblems that define the points x(p), we digress briefly for a
technical but convenient detail.

First note that the properties of the barrier function -0, in particular its second
derivative and convexity, finiteness in P,., and the limit as x approaches the boundary
of P,, are invariant under linear perturbations of 0.

Hence, the set {4) I 0(x,p):= O(x,p)+ wTx, w E B?' fixed) of linear perturba-
tions of 0 forms a family of barrier functions for P,,. Each barrier function defines
a smooth path of minimizers argmin{fo(x) + jt(x,p)} leading from some point in
PO to an optimal solution of (CP). Also, for any p0 > 0 and any x' E P0 there is a
unique w such that the path starts at x° when p runs from p0 to 0. Therefore, the
functions k define a vector field that flows to the optimal set, a fact that will be used
extensively later on and is well described for the case of linear constraints in (17].
The minimizers of the perturbed barrier functions will be called perturbed centers.
and the paths of the vector field will be referred to as perturbed center paths.

The "perturbed center" without perturbation (i.e. with w = 0) is the analytic
center defined by Sonnevend in [28]. It exists if, for example, the set of optima]
solutions is bounded and the Hessians of the constraints satisfy a relative Lipschitz
condition [6]. For the analytic center a number of nice properties can be shown; in
particular,

e If the shifts /3i are zero, one can show that there is a two-sided ellipsoidal
approximation of the level set {x E P I fo(x) < A(p)} centered at the point
x(pL), such that the ratio of the inner ellipsoid to the outer ellipsoid is of order
m (the number of constraints) independent of the data of the problem [29. 7].
Here, A(p) > fo(x(p)) is a suitable number whose derivation is explained ill
[29].

* Again if/3i = 0, the numbers tl/fi(x(p)) define dual feasible variables that can
be used in a test for optimality.

Both properties hold in a somewhat weaker form if the perturbation w is small [6].

5Thc change in concept is not substantial. Indeed, we may regard f,(r, t) as a function of
the n + I variables z, p. In the r,ji space the domains of the barrier functions remain cOist ant.
(learly, if the functions fW() are linear or convex quadratic, then so are the functions f,(r.1,
and the properties of the logarithmic barrier function (the relative Lipschitz condition in [7] or sclf-
(oncordance in [24]) also hold in the r, it space. For other convex finct ions this is not always truc.

l ow'vr'r, a complexity analysis based on these properties i% not of our concern for the iounclu. Vt

hope to identify larger classes of problems that can be solved by our method.

• ' I 7



The particular perturbation we choose is

M 1
w := pgo(XO) + i(X0 

1)gi(z°), (3.4)

where p is a scalar to be specified later. (Both w and p are fixed throughout the
algorithm.) For our barrier method we consider the functions p, : P- -- R,

m

Wp(W := -fo(x) - log(_f3 (XjY)) _ WTX, (3.5)
i=1

that combine a multiple of the objective function and the perturbed barrier function.
For it E (0, 1] we define 6 x(y) to be a perturbed center if x(p) E P, and if it is a
minimum of the function W,,. We denote the gradient and Hessian of (P,, by g(x,y)
and H(x, t) as follows:

p _______) _36

g(XP) := V P(x = -go(x) + i (3.6)

and
v2 HiM ) gi(x)gi(x)T

H(x,p) := V 2 u(X) = P Ho(x) + --fi(x) __(3.7)

Clearly, II(xp) is positive semidefinite if the fi are convex. Here, we assume that it
is positive definite. It becomes ill-conditioned, however, if x approaches some point
on the boundary of P, at which less than n linearly independent constraints are
active. In Section 4.4 we "expand" the matrix H and refer to [4] to improve the
stability when solving linear systems with H. Note that x = x(p) is a perturbed
center if and only if it is a zero of the following characteristic equation:

g(x, P) = 0. (3.8)

(Clearly, if x satisfies g(x,p) = 0, then by convexity it is a minimum of %,. Con-
versely, if x is a minimum of in the open set P,, then g(x,p) = 0.)

Note that by definition of w the point x° is the first center: x° = x(1). Ideally
we would like the perturbation w to be zero, in which case the points x(p) are the
analytic centers. The size of w depends on the choice of the starting point and on
the shifts /3i. If w is close to zero, one can prove that the tangent to the curve
x(p) closely approximates the curve in some interval L91,P21 that does not depend
on the problem data. For large w (measured in the norm given by H(x,p)- 1 ) this
is no longer true. It is therefore important to initialize the method such that w is
moderate in size, see Appendix A.2. Eventually, H(x(pO),p) -* 0o as p - 0, so that
w measured in the above norm tends to zero.

The function jvp,(x) is (at least for p = 1) just the objective function fo(x) to
which a multiple (p) of the barrier function is added, as in the outline of Section

6If P is empty then the definition is valid only for t E (6, 1), where 6 is as in Lemma 1. We note
that for certain degenerate cases the analytic center may not exist, while the perturbed center is
well-defined.
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2.1. Our choice of W, in (3.5) rather than the seemingly more natural choice pp,
can be motivated by its gradient (3.6) defining the characteristic equation (3.8). If
we set p = 1 for the moment, then (3.6) shows a certain symmetry in the treatment

of go and gi for i > 1: The parameter p may be considered as a function value
p = -fo(x,y) := ,(p) - fo(x) for some suitable quantity \(p). For quadratic f, it
has been shown in [29] that there is a monotone 1-1 correspondence between P and
X(p), and that )X(y) converges to the optimal value fo(x*). (The result generalizes in
a straightforward way to convex fi with self-concordant barrier functions.) Another
reason why we consider V, rather than p, is that the property of self-concordance
is not invariant under multiplication of the barrier function by p.

Under relatively weak assumptions the following properties can be shown.

Lemma 2

1. A unique perturbed center exists for all it for which P' is not empty.

2. limUO minzEp 1x() - x112 = 0 if P is not empty.

3. fim,.0 fo(x(y)) - fo(x*) = 0 if x* is an optimal solution to (CP).

Proof: See Appendix C.

4. ONE ITERATION OF THE METHOD

The general idea of the method is as follows. Starting from y = 1 and x(1) = x0 ,

a sequence of iterates is generated in some neighborhood of the path x(p). The
iterates x k are regarded as approximations to points x(pk) on the path of perturbed
centers, where it° = 1, Pk > 0, pk - 0. The algorithm proceeds in three steps per
iteration.

1. Compute the tangent x' to the curve x(p) at the current iterate xk and - k .

2. Choose adaptively a steplength a E (0, 1) to follow the tangent starting from
rk . Let the resulting point be ik = Xk _ apkx,. Set l/k+l = )t '(1 - o). The
steplength cr is chosen such that ik P and such that Newton iterations

starting from ik for finding x( 1 k+I ) can be expected to converge rapidly.

3. Perform a small number of Newton steps to bring the iterate closer to the
path of perturbed centers (using some "old" factorization of the Hlessian and
a linesearch with merit function +,,k+ ). The result is xk+.

It is in Step 3 where our method differs from most implementations of interior-lpoint
algorithms for linear programming [4, 14, 15]. For linear programs it appears that
the extra effort taken in Step 3 to move away from the boundary towards t1e center,

does not pay. For nonlinear problems our results indicate that -centeritg' stabilizes
the algorithm and may be necessary in some cases.

• " -- .=.=== =...i. nn ~ m imm ml ~llllll lllllll~ lI I I



4.1. The Tangent

Let v(x,p) be the derivative of g(,p) with respect to p:

v(x,p):= gxt) - g()- i
= P) d ti) f=(- 2 gi(x). (4.1)

If H(x(t),t) is positive definite the perturbed center is unique and the tangent to
the curve of perturbed centers at x(p) is defined by the linear system

H(x(p),p)x'(p) = -v(x(p),jt). (4.2)

Verification of (4.2) is straightforward by differentiating g(x(p),p) = 0 in (3.6) with
respect to p. (It can be shown that lim..o p2 H(x(p), p) exists and is nonzero. In our
implementation we therefore use p2 1H(x, p) and p2 v(x, p) instead of the unbounded
quantities H(x, p) and v(x, p).)

Note that w does not occur in the definition of the tangent. If the current
iterate is some point x k that is not on the path of perturbed centers, then the above
qualitity is the tangent to some other perturbed center curve that also leads to an
optimal solution x*.

NAe note the inherent sparsity of H(x,iy) if the functions fi each depend on few
variables only, or if there is a small number of separable functions fi. (For separable
fi the gradient gi and thus also gigT could be full. The "expansion" of H suggested
in Section 4.4 that is intended to reduce the condition number of the linear system
also preserves the sparsity in this case.)

In Step 1 above we determine x' from (4.2) with xk in place of x(p) and p = rk,
i.e. from the system H(xk,pk)xI = -v(xk,tuk). The steplength a in Step 2 depends
on how well Newton's met!,sd converges. We focus on the Newton step first.

4.2. The Newton Step

The Newton step Ax for finding x(p) starting from x E P, is given by the system

H(x,P))Ax = -g(x,p). (4.3)

From [24, 6] we know that Newton's method (without linesearch) for finding the
center x(p) converges quadratically if V, is self-concordant (i.e. if the Hessians of
the constraints satisfy a relative Lipschitz condition) and

1
-y := AxTH(x,pu)Ax = !q(x,p)TH(xp)-1 g(xp) = -g(x,p)TAx < - (4.4)

We note that a Newton step for finding x(Ipk+j) may not be necessary, siace as
mentioned above, all the "perturbed center curves" end in the optimal set, and one
could continue by following the tangents of different curves. However, the step along
the tangent may bring the point i k close to the boundary of Pk (and iterating too
close to the boundary of P, slows down convergence), so that a Newton correction
is indeed useful. In our program we compute the Newton correction with tile same
factorization of H as already used for the computation of x'. The linesearch during
the Newton step is controlled by the merit function (pk+,(x).
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4.3. The Steplength a During Extrapolation

Our goal is to choose a E (0, 1) as large as possible such that the extrapolation
Sk = xk - alkX, is strictly feasible, i.e. ik e P' +. with 1 1 k+1 = 11k(1 -a ), and such

that Newton's method for finding the (next) center converges rapidly.

An obvious possibility to guarantee the second condition is to choose the step-
length during extrapolation small enough such that the first Newton step Ax starting
at the predicted point satisfies a relation of the type (4.4). However, this results
in very short steps a in general. In our implementation we first approximated the
maximum possible steplength amax such that x + amXx' is still feasible and then
took r percent of oni,. If it turned out that Newton iteration converged quickly we
increased r for the next extrapolation, and conversely, if Newton iteration was slow
we decreased r.

4.4. Improving the Stability of the Linear Systems

At the definition cf H in (3.7) we mentioned the instability to be expected when
solving systems with 1I. In [4], Gill et al. present an approach to stabilize the
solution of KKT systems. To illustrate how their analysis applies to our matrix II
we set p = 1 and 3 = 0 for the moment. Note that H can be written iii the form

H(x,it) f l(x,/1) + JTD- 2 J (4.5)

where II(x,p) 4- o i) , Hi(x), J is the Jacobian of the constraints,

J = : (4.6)

and D = diag(f,(x)). Soiving a system with II is equivalent to solving a system
with

jt = T [t D" (A -7)

which can be seen when taking the Schur complement of -D2 within A. This
system in turn is equivalent to a system involving

h"-= 0 .1.l

I J 0

(Take the Schur complement of D- 2 .) Systenis of the form h" are consd, red in
[.1]. The basic idea is that it is better to fictorize A" directly, or to take the Sc hiur
coiplement of just certain parts of the diagonal matrices, such that the Schu r (-oi-

pleirneit does not become ex(:essively ill-conditioned (and does not suffer excessive
fill-in caused by (lense rows or columns of .J).
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4.5. Stopping test

Let c be the desired final accuracy in the objective function. A possible stopping
criterion is p < cp(1 + IJDfo(x)JJ)/m. For convex constraints with self-concordant
barrier functions and a linear objective function this stopping test is exact at points
on the path of analytic centers [7]. However, since the constraints have been shifted,
the final iterate is not always feasible. It is only guaranteed that fi(x) < poi. The
relative constraint violation is bounded by uOfi/(l + IIDfi(x)Il). In the numerical
experiments below we have chosen

it := min( cp(l + IIDfo(x°)J[)/n, c(1 + [[Dfi(x°)JJ)/(J3i + c)

for 1 < < rn and stopped as soon as a < t.

4.6. Convergence

Before concluding this description we briefly state some convergence results.

" If (CP) has an optimal solution, one can show under weak conditions that as

it - 0 the iterates xk satisfy the same limit relations (for k - oo) as stated
for x(p!) in Lemma 2.

"If (CP) has no optimal solution, either xk _ oc (if the problem is unbounded)
or we find that z -0 6 > 0 with 6 as in Lemma 1 Part 4. Both cases (xk _
and it - 6 > 0) are hard to identify in an implementation and need special

attention.

5. NUMERICAL EXPERIMENTS

The above method was implemented in MATLABTM[19] and tested on a few prob-
Iins with up to 300 unknowns and dense arithmetic. As mentioned before, the use
of sparse-matrix techniques will be crucial for the efficiency of this method. The de-
velol)ment of efficient interior-point methods for linear programs took several years
and similar efforts may be needed for developing an interior-point method for non-
linearly constrained problems. The goal of the implementation here was merely to
illustrate the behavior of the method in terms of number of iterations and Newton
corrections, and to test various parameters (such as f and p) that define the barrier

function.

The statistics below read as follows. Each iteration involves computation of
the tangent and a small number (1 to 10) of Newton steps. The tangent and the
Newton steps are computed from a linear system that involves the Iessian of p.
Sometimes more than one Hessian is needed in an iteration. Each lessian is used
for several Newton steps; their computation and factorization dominates the overall
comipuitation.
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5.1. Problem Manne

This Problem is taken from [21], where it is presented in two versions. The first
version involves 300 variables, a logarithmic objective function, 100 nonlinear con-
straints, 100 linear inequalities and 400 simple bounds. The second version is iden-
tical except that it has only 300 simple bounds.

In [211 results are given for MINOS. Version one took 7 major iterations, 183
minor iterations, 497 function evaluations and 12 seconds on an IBM 370/168, while
version two required 11 major iterations, 355 minor iterations, 859 function evalua-
tions and 34 seconds.

MINOS performs best if a high number of linear constraints or bounds are active
in the optimal solution, thus reducing the size of the (dense) systems that are solved
in each iteration. For version one, the size of the dense systems grew to 25, and for
version two they grew to 99 (since some of the active bounds in version one were
removed).

In contrast to MINOS, the size of the systems to be solved in each iteration of
the interior-point algorithm is always 300, i.e. the number of variables. For both
versions of the problem these systems are sparse and of diagonal structure, with at
most 7 nonzeros per row. A sparse-matrix solver could take great advantage of the
structure.

Problem Manne is sparse and convex, but it does not satisfy the conditions of
[6] or [24] that guarantee a fixed minimum rate of convergence.

Below we report the results of our method for version one and version two. As
starting point we chose the (infeasible) vector of all ones. (The objective and soni,
of the constraints are not defined for x = 0.) In contrast to MINOS, the interior-
point algorithm performed slightly better for the second problem, giving hope that
for certain problems in which the active constraints do not significantly reduce the
dimension of the MINOS subproblems, interior-point algorithms may become an
attractive alternative.

Problem Manne was one for which our initialization in Section 3.3 resulted itt
a vector w of norm (wTH-I,)I1/2 ; 15. By the procedure in Appendix A.2 we
decreased the norm of w to about one before starting the iterations. For coniiparison
we also list the results for problem one without reducing the size of w. In this cas,
convergence was very slow, and for many iterations the maxinmm steplength (1n1L
during extrapolation was less than 0.25. In all examples, Newton's method for
finding the perturbed center at each iteration was terminated when the Il-norm

IIAxIIj := (AxTfl(x,,)Ax) 1/ 2 of the Newton step A.r was less than 1/2.

We also show the results for a smaller version of problen one with only 10
unknowns, to show that the number of iterations grows only nin(erately with lhe
inunber of variables for this particular problem.

13



Problem Large w Version one Version two Small problem
Iterations 38 19 15 11
Hessians 40 24 20 13
Newton steps 115 76 61 38

2.05 2.05 2.05 2.05
p 4.1 4.1 3.8 0.29
Final i 3.4e-9 5.7e-9 2.2e-8 8.7e-9
Objective 9.287556 9.287556 9.330183 2.670098
Constraint violation 4.9e-9 8.1e-9 3.1e-8 1.le-8

5.2. Problem 385, Schittkowski

This is a problem with 15 unknowns, 10 convex quadratic constraints and a linear
objective function. It is taken from [27], where it was solved with NLPQL [26] using
693 function evaluations and 242 gradient evaluations. Running times or numbers
of arithmetic operations are not reported in [27]. The starting point (zero) was
strictly feasible and 3 was zero. (Hence, P, was constant and also the final point
was strictly feasible.) Our implementation took 11 iterations to solve the problem,
a total of 11 evaluations of the Hessian, 27 Newton steps (each of which requires
the evaluation of the gradient of p) and 64 additional gradient evaluations for the
linesearch steps. The steplength a was 0.80 on average, ranging from 0.70 to 0.92.
The Hessians of the constraints are diagonal, but to preserve the sparsity of the
Hessians of c, the dense outer products of the gradients in (3.7) must be treated
separately (for example as in Section 4.4).

5.3. Problem 386, Schittkowski

This is the same as problem 385 above (except that two entries in the coefficients
of the constraints are changed) with an additional concave constraint. In [27], 900
function evaluations and 327 gradient evaluations were required to solve the problem
to 6 digits of accuracy. In order to explore the limit of applicability of our method
we tested this problem with different parameter settings.

" Using the standard method, the Hessian of V became indefinite in the 8-th
iteration and our algorithm failed.

" In a second run we set the Hessian of the concave constraint equal zero but
kept all other second-derivative information. The method converged to the
true solution in 10 iterations using 10 evaluations of the Hessian of P and 28
Newton steps.

" in a third run we set the Hessians of all constraints to zero (simulating a
linearized problem). In this case, the Hessian of V was indefinite to begin with
(since there were only 11 linearized constraints in a 15 dimensional space) and
the method failed again.

" Finally we replaced the Hessians of all constraints by multiples of the identity

(such that the norm of the replacement approximately equals the norm of the

14



true Hessian). This time the method took 15 iterations, 20 evaluations of the
Hessian of V and 62 Newton steps.

5.4. Conclusions

The design of fast and stable implementations of interior-point algorithms is marked
by a number of conflicting principles.

" It is desirable to maintain some polynomiality results that limit the dependence
of the method on the data of a particular problem. However, most polynomial-
time interior-point methods are too conservative in the choice of the steplength
and therefore inefficient in practice.

" To maintain affine invariance of the method seems equally important, to reduce
the influence of affine transformations of the problem. With finite-precision
arithmetic this influence however cannot be eliminated completely.

" Finally, the linear systems involved should be kept well-conditioned.

A typical example of how to take these concepts into account in the above method
is the steplength along the tangent: the closer the extrapolation to the boundary,
the more ill-conditioned the Hessian of the barrier function (and the worse tile the-
oretical complexity), suggesting that one should not take too large steplengths. The
concept of numerical stability based on the condition number of a matrix however is
not perfect. Not only do interior-point methods for some reason perform well when
taking steps of 99.995% to the boundary (!!!) [14], but there are also simple exam-
ples for which the condition number of a matrix is (almost) irrelevant; for example
when solving equations with the "ill-conditioned" diagonal matrix diag(10 ), 10-10).

A. DETAILS FOR THE INITIALIZATION

A.1. Additional Assumption

In the footnote preceding the definition of the functions fi(x,p) (3.1) we have re-
ferred to Appendix A for a more precise statement about our assumptions. To
guarantee convexity we require the following assumption.

We assume that the functions f, are convex and continuous in the set
P1 and smooth in its interior. That is, we assume that P C S.

If this assumption is violated we can try to change the given values of ,3i or the
starting point xA. (PI depends on 13i and x°.)

A slightly more complicated modification is as follows. If points .x' are known
such that f,(i') < 0, we may consider the functions f,(x,it) := f,(x + p(x' - X1)).

In this case, Lemma 1, Part 1 and 2 no longer hold but the sets 1', still converge to
I' and Part 3 and 4 still hold. We will not discuss this modification any f imther 1)(t
concentrate on the hopefully more common case (3.1).

15



A.2. Decreasing the Perturbation

As mentioned in Section 3.3 it is important that the perturbation w describing the
perturbed centers not be too large; more precisely that wTD2 i(xO)-lw is say less
than 1. Only for small vectors w is it possible to prove polynomiality for linear
constraints, and our numerical experiments suggest that in practice also, large per-
turbations w slow down convergence. In some examples however, the initialization
outlined in this paper does yield large perturbations w, and it is necessary to reduce
the size of w before starting the algorithm. For such cases, our i. ,.,lementation
reduced the size of w by the following procedure.

" Before starting the predictor-corrector iterations set w = 0 and introduce
additional constraints of the form (x 1-x°) 2 < 1012 t 2 (with t as in Section 3.1).

" Perform a number of Newton steps for finding the (analytic) center of P1 with
the additional constraints, and stop when the H-norm IIAxIIH
= (AxTH(x,1)Ax)1/2 of the Newton step Ax satisfies a given bound. Let
the result be ±0.

" Remove the additional constraints again and redefine w for the new starting
point xo as outlined in Section 3.3.

This procedure does not assume that a bound of the form "lIx - x°ffo, < 106 t for all
feasible x" is known a priori; the additional constraints are only used for decreasing
w to guarantee that Newton's method is well defined, and they are later removed.

A.3. Warm Start

If an initial point x° is given that is "almost" optimal, a "warm start" is possible by
defining the quantity t (before (3.1)) as max{10 - 4 , fi(x°)l for example, rather than
niax{l, fi(x°)}, and by fixing p _> I to minimize the norm of the gradient of 01(x°).

We point out a possible problem that may occur with this warm start. If the
initial point x° is feasible, then the sets P and P,. coincide-up to a perturbation of
the size 10- 4. In contrast to many interior-point methods for linear programs, our
method requires strict fulfillment throughout of all inequalities describing the set P,,
(since outside P. the functions f, may not be defined or may not be convex). If the
set P is "long and thin" (e.g. a constraint of the form lxi I < 10-5 that bounds the
first component of the vector x makes the set P very thin) and the initial point x°

is feasible but far from the optimum, then it may be wise to define /O as outlined in
(3.1), rather than using a warm start and "winding in a long thin neighborhood of
the path of centers" in P from x' to the optimal solution 7 . The definition in (3.1)
is chosen to avoid such a long thin path.

7A convex set P being long and thin is no problem in theory; there is always an affine mapping
that maps P into a "nearly round set" (i.e. into a set that contains a ball of radius I and is contained
in a ball of radius n, the dimension of the space). However, the affine mapping changes the condition
numbers of the Hessians. Hence, in the context of finite precision, the concept of affine invariance
is only of limited relevance.
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A.4. The Multiplier p

In the definition of the center (3.5) we did not elaborate on the choice of the multi-
plier p for the objective function. However, a good choice of p is very important. For
one-dimensional examples it is easy to see that a poor choice can result in the curve
of centers passing the same point x twice (which is not attractive when following
this curve numerically). We applied the following heuristic in our implementation.

" If the constraints have been shifted, i.e. if / # 0, we compute a tangent ti for
the case p = 0 and a tangent t 2 for the case that p = 1 and that the shift is
kept unchanged throughout the method. We then choose p = t21/11 11ll.

" If the constraints have not been shifted, i.e. if 3 = 0, then we choose p such
that the H-norm lIx'llH of the tangent x' at the first iteration is 1.

B. SOME RESULTS ON THE SETS P,

Proof of Lemma 1:

1. Clear, because /3i > 0.

2. For x E P\P 3i : fi(x) > 0. Hence fi(x) - ij3i > 0 for small iL > 0; i.e.
x V P, for such iL.

3. Let x E P; i.e. fi(xl) 0, 1 < I< m. Then x +u(x ° - x 1) E P because

fi(xl + li(x' - x'), p) = fj(jux ° + (1 - li)x') - li;3,

_< pfi(x° ) + (1 - t)Af(x') - i(f(x ° ) + ) _ -lt < 0.

4. Let 6 := inf>o P, $ 0. By continuity of fi, 6 < 1. If it > 6, there is a
t E [6,p) for which P, is not empty. Similarly to Part 3, it then follows with
X1 E P , that P, 3 0. (We note that 6 = 0 is possible if Pl is unbounded.) U

Part 2 of Lemma 1 also holds in the following stronger form.

Lemma 3
Let K, := {x Ilx112 < r) and P, := {xI x = y + z, y E P, i -1 2  1 4. Then for all
finite r and all positive ( there is a positive p such that

P. n Ir C P,,

which iml)lies that P, converges uniformly to P in any ball A'r. The restriction to
a bounded set A', is necessary, since there are examples for which P, V P1 for ally
I > 0.

Proof: We prove the first statement by contradiction. Suppose there was a finite
r and a positive such that for all it > 0, PA nl K, t P(. Let itk -k O, /1' E (0 1)

be a sequence an(t xk E (Pvk n K,)\P,. Since 11.k 1 l < r there is ani acci1111ulation

point x. Clearly x E P (otherwise 3io : f,o(x) > 0 and then by coiNtiniiiy of fo .

17



6,c > 0 : f1e(" + K6) > a, contradicting the definition of i). By construction we
also know that i V P', in contradiction to P C P'. U

That the more general statement "P, C P, for small enough p" is not true
call be seen from a simple counterexample. Take the function f(x, y) := y2 /'X with
domain S := {(x,y)j x > 1}, defining P := {(x,y) E S1 Y2 /x < 0}. It is easy to
verify that f is convex and that P, = {(x,y)I x > 1, <_I px} P, for any
IL > 0.

Note that min{yj (x,y) E P} exists in this case, but not so rain{y (x,y) E P,}
for it > 0, and neither does a perturbed center exist for 0 < u < 1. (This example
shows another surprising property. If f, and f2 are convex functions that each have
a minimum on a common closed set S, then fi + f2 may not have a minimum on
5; e.g. take y2 /x and (y - 1)21x on the above set S.) I

Despite this counterexample, the vague intuition that P might not be much
"'bigger" than P can be formalized in the following simple lemma.

Lemma 4
If P is nonempty and bounded for some 6 E (0, 1), then so is P1.

Proof: (by contradiction.) Without loss of generality let 6 = 0 and x, = 0 G P.
(Then also 0 E Pi.) Suppose now that P is unbounded. By convexity of P there
is a vector s such that As E P 1 for all A > 0. Boundedness of P = P0 implies that
there exists Al < oo such that As V P ifA > M, i.e. 3io : fi(Ms) > 0. We conclude
that 6 := (f 1e(Ms) - fio(0))/M > 0, and hence for A > Al it follows from convexity
of fi0 that

f 0(As) 2! fi 0(Ms) + (A - M)b - 00

as A - oc. This implies that fj 0(As) - Oi > 0 for sufficiently large A, which in turn
iml)lies that As V P, for such A, in contradiction to the choice of s. U

C. CONVERGENCE OF THE CENTERS

We are now ready to show briefly the results stated in Lemma 2, at least for cer-
tain cases. The results hold under more general conditions, but the most general
conditions are not of concern in the present paper.

Proof of Lemma 2
Throughout this lemma we assume that P is bounded (which is the case, for ex-
ample, if P is nonempty and bounded), and that V, is strictly convex (as for linear
or quadratic or self-concordant programs).

First we note that a perturbed center x(pi) exists for all iL for which P0 is not
empty, since - ,_ ln(-f,(x,jt)) - oo as x approaches tile boundary of P,. If ,;l
is strictly convex then so is (p,, (as long as P, 0), and the perturbed center is
unique.

The second part of Lemma 2 follows from Lemma 3 since x(;p) E P, C P and
PI is bounded, i.e. P C Kr- for some r.
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To prove the third part we note that when multiplying (3.5) by IL we obtain

x(p) = arg min pp,(x) = arg min fo(x) - 1 Eln(-f:(x,p)) - pwTx.
xEP'. xEP,

Let x" := x* + (xo - x*). We conclude as in the proof of Lemma 1 Part 3 that

f 3 (x",p) < -pt for all i. This implies that

m

-,i ln(-f(zMp)) -pwTx" < -npln(pt) - .wTx 1A - 0

i=1

as p - 0. (Note that wTxh is bounded for Y E [0, 1].) By continuity of fo it also

follows that fo(x 1 ) -* fo(x*), so that limsup,..op/,(x) < fo(x*). From Part 2
above and continuity of fo it follows that liminfA,,o fo(x(p)) _ fo(x*). Further,
pp,(x(p)) !_ jpi(x), and since the logarithmic barrier terms - ln(-fi(x(jt),it))

and wTx(p) are bounded below for p E [0, 1], the claim follows from the above

inequalities. U
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